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Abstract

Manufacturing features and feature-based representations have become an integral part of research on

manufacturing systems, largely due to their ability to model correspondences between design information

and manufacturing operations. However, several research challenges still must be addressed in order to

place feature technologies into a solid scienti�c and mathematical framework. One challenge is the issue
of alternatives in feature-based planning.

Even after one has decided upon an abstract set of features to use for representing manufacturing

operations, the set of feature instances used to represent a complex part is by no means unique. For
a complex part, many (sometimes in�nitely many) di�erent manufacturing operations can potentially

be used to manufacture various portions of the part|and thus many di�erent feature instances can

be used to represent these portions of the part. Some of these feature instances will appear in useful
manufacturing plans, and others will not. If the latter feature instances can be discarded at the outset,

this will reduce the number of alternative manufacturing plans to be examined in order to �nd a useful

one. Thus, what is required is a systematic means of specifying which feature instances are of interest.
This paper addresses the issue of alternatives by introducing the notion of primary feature instances,

which we contend are su�cient to generate all manufacturing plans of interest. To substantiate our

argument, we describe how various instances in the primary feature set can be used to produce the

desired plans. Furthermore, we discuss how this formulation overcomes computational di�culties faced

by previous work, and present some complexity results for this approach in the domain of machined

parts.
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1 Introduction

Feature-based manufacturing technologies hold great promise in bridging the information divide between

design and manufacturing activities. Manufacturing features and feature-based representations have become

an integral part of research on manufacturing systems, largely due to their ability to model correspondences

between design information and manufacturing operations.

Over the last decade, signi�cant advances have been made in development of technologies that involve

manufacturing features. For example, feature recognition techniques have been developed and successfully

employed for a variety of applications including automated process planning, design analysis, and part-code

generation for group technology. However, such advances have created new research challenges, one of which

is discussed in this paper.

In this paper we will only consider domains in which parts are produced by sequences of discrete manufac-

turing operations (machining, sheet metal bending, forging, and so forth). Within these domains, di�erent

researchers use di�erent de�nitions of manufacturing features, but these di�erent de�nitions usually have a

number things in common (cf. [17, 23]). In particular, in these domains a manufacturing feature is normally

considered to be a parameterized geometric object that corresponds to a particular kind of manufacturing

operation. Thus, speci�c manufacturing operations for a particular manufactured part correspond to feature

instances, which are speci�ed by giving values for the parameters.

Usually, several alternative sets of manufacturing operations can potentially be used to manufacture the

same part. Since each operation will normally correspond to a di�erent feature instance, the set of feature

instances used to represent a part is by no means unique. For complex parts, it usually is not feasible simply

to enumerate all of the feature instances, because the number of them can be very large, or even in�nite.

In most cases, very few of the potential feature instances for a part will make practical manufacturing

sense. Thus, most approaches to feature recognition will generate only a few of the possible feature instances.

However, the criteria for choosing which instances to generate are typically ad hoc heuristics that are based

on local and incomplete information. This makes it di�cult to specify the behavior of the feature recognition

system and to generate alternative plans in a comprehensive yet well-controlled manner.

This paper addresses the question of which feature instances should be generated. In particular, we argue

that for most reasonable de�nitions of manufacturing features, there is a set of primary feature instances that

are su�cient for generating all promising manufacturing plans. We describe how primary feature instances

can be used to overcome computational di�culties faced by previous work, and present complexity results

for the domain of machined parts.

The remainder of this paper is organized as follows. In Section 2, we describe manufacturing features and

show that for certain parts, there might be in�nitely many feature instances. In Section 3, we de�ne feature-

based representations and show that in worst case, the number of feature-based representations might be

exponential in the size of a given set of feature instances. In Section 4, we describe how feature recognition

can be used to generate feature-based representations. In Section 5, we describe how the notion of useful and

primary instances can be used to constrain the possible number feature instances. In Section 6, we describe

how feature-based representations can be generated from the set of primary feature instances. Finally, in

Section 7, we present our conclusions and describe the bene�ts that can be achieved by using our formulation.

2 Manufacturing Features

A number of attempts have been made to de�ne and classify manufacturing features [1, 7, 11, 24, 2]. Although

there are di�erences among these approaches, many of them share important similarities. For example, a

machining feature usually corresponds to the volume of material that can be removed by a machining

operation. In general, manufacturing features usually have associated with them geometry and tolerance

information that can be matched with the design attributes of the part and be used to parameterize the

manufacturing operations.

For manufacturing domains that involve discrete manufacturing operations (such as machining, sheet

metal bending, forging, etc.), a feature can be thought of as a parameterized object. The parameters of a
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feature either directly relate to or can be used to derive the parameters of the underlying manufacturing

operation. For example, Figure 1 shows examples of features for the machining domain. The feature shown

in Figure 1(a) suggests that, if design has a cylindrical surface which needs to be created, drilling may be

considered as a possible machining operation. In general, various parameters of a feature can be assigned

values from either a discrete or a continuous data set.

In a planning problem, one is typically interested in the feature instances that lead to correct plans. A

plan is considered correct if it is realizable with available manufacturing resources and produces the part

from the stock. A feature instance f is valid if there exists at least one correct plan that includes f ; otherwise

f is invalid. In a domain of machined parts there are many conditions under which a feature is invalid. For

example, any volumetric feature that intersects with the �nal part geometry is considered invalid. Including

any such feature in a plan would result in over-machining of the part. The set of all valid feature instances

is called the valid feature set. We use F to denote valid feature set. Intuitively, one can think of the features

in the feature set as the \feature space" of a given part.

Observation. There exist parts for which the valid feature set is in�nite, i.e., there are in�nitely many

valid feature instances.

As an example, consider the part shown in Figure 2(a). This part has a slot that needs to be machined

from a hollow cylindrical stock (as shown in Figure 2(b) using standard end-milling operations. As shown

in Figures 2(c) and (d), two end-milling operations are needed to create this slot. Therefore, we need to

represent this slot as two end-milling features f and f 0. Any value of w between w1 and w2 can be selected

as the width of end-milling feature f . This leads to in�nitely many possible instances of f . Similarly, any

value of w0 between w10 and w20 can be selected as the width of end-milling feature f 0. This leads to

in�nitely many possible instances of f 0. Which of these feature instances are most appropriate depends on

the available manufacturing resources and the optimization criteria. If this part had some other features,

those features would have also a�ected the most desirable feature instances.

In general, if a feature parameter can be assigned values from a continuous scale (such as from a range of

real numbers) and none of the values result in an invalid feature (i.e., making every plan that includes this

feature incorrect), there will be an in�nite set of feature instances for the part.

3 Feature-Based Representations

Feature-based planning usually involves constructing one or more feature-based representations (FBR) of the

part. Each FBR is a collection of feature instances which can then be mapped into plans. More formally, a

set of valid feature instances G is a feature-based representation for a given part P and stock (or, blank) S,

if it has the following properties:

1. Su�ciency. The features in G are su�cient to describe P , i.e., if we apply manufacturing operations

corresponding to the elements in G on S, we get P . This ensures that an FBR will have enough

features to result in a plan that can manufacture the part to desired speci�cations.

2. Necessity. No feature f in G is redundant, i.e., if we eliminate any feature from G, then the remaining

features are not su�cient to produce P from S. This condition means that each feature of a feature-

based representation will contribute to some necessary portion of the plan.

Observation. In the worst case, for a �nite subset Fr of the valid feature set F , the number of alternative

feature-based representations that can be produced from Fr is exponential in the size of Fr.

Let Fr be a �nite subset of the valid feature set (i.e., Fr � F) and let I be the size of Fr (I = jFr). Let

A be the number of alternative feature-based representations that can be de�ned using the feature instances

in Fr .
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Figure 1: Examples of machining features.

3



(a): stock (b): part

w
w1

w2

hh1h2

h1’
h’

h2’

w2’w1’ w’

(c): f (d): f 0

Figure 2: A part geometry leading to in�nitely many feature instances.
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Figure 3: Feature instances leading to exponential FBRs.
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Consider the case where a part can be expressed as m spatially disjoint regions to be manufactured and

that there are ni choices of possible feature instances for i
th region. Therefore,

I = n1 + n2 + � � �+ nm:

The number of alternative feature-based representations for this part if

A = n1 � n2 � � � � � nm:

The worst case for A will be when n1 = n2 = � � � = nm = n. Substituting this value, we get I = n�m, and

A = nm. Now by substituting m = I=n, we get

A = (n1=n)I :

The worst case occurs when n = 3, where substituting we get A = (
3
p
3)I . From this expression, we can see

that in the worst case, the number of feature-based representations for the part is exponential in number of

feature instances (i.e., A 2 O(kI)).

Consider the part and the 16 feature instances shown in Figure 3. There are 8 disjoint regions each

having two possible choices of feature instances. Therefore, these 16 feature instances result in 256 di�erent

feature-based representations for the part.

4 Feature Recognition for Generating Alternative FBRs

In this section, we describe various ways in which feature recognition has been used to generate alternative

FBRs from a single CAD model. This is followed by a discussion of the main computational problems

in handling alternative feature instances. Finally, we describe how these computational problems can be

overcome.

4.1 Approaches

Many di�erent approaches have been developed over the past decade to recognize feature instances and

feature-based representations. Many of the existing approaches to recognizing feature instances address the

problem as one in 3-dimensional geometric pattern recognition to be approached with techniques from AI

(such as frame-based reasoning, graph- and plex-grammars, expert systems, neural nets etc.) [8, 16, 5, 12, 24],

pattern matching [15, 20], graph searching [4, 9, 22, 3, 13], or geometric algorithms [10, 6, 19]. Feature

instances recognized by these systems are grouped into FBRs using the two approaches described in the next

two sections.

4.1.1 Generating FBRs Directly

In this approach, FBRs are generated \on the y," as the feature instances are recognized. These approaches

typically produce a single FBR for the given part. In this approach, whenever alternatives are encountered,

a decision is made \on the y" using a greedy heuristic to select the most promising feature or to discard

others. Such greedy heuristics consider only the current feature in relation to the part (and sometimes the

stock) and those features found up to that point in the recognition process. In this way, features are discarded

based on only partial information and a potentially useful FBR could be eliminated from consideration.

This approach has several drawbacks. First, until we have information about all of the other features that

might be in the feature-based representation, applying a greedy heuristic to build the representation on a

\best-�t" basis may not lead to optimal results without extensive backtracking. Second, designing a system

that includes a domain speci�c evaluation criteria as part of feature recognition is very di�cult. Thus, this

approach is not appropriate for complex parts that have a large number of alternative FBRs.
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4.1.2 Generating FBRs from a Feature Set

In this approach, the following two steps are used to generate FBRs:

1. Recognize a set of alternative features. First from the given part, recognize a set of alternative features.

Note that, at this level, all the features that appear promising are retained in this set of features.

2. Generating and evaluating alternative FBRs. Once we have recognized a set of alternative features,

we can generate FBRs from this set. Intuitively, one can think of the set of alternative features

found through feature recognition as vectors forming a basis for the \feature space" of the given part.

Knowing a good set of spanning features allows us to better de�ne upper and lower bounds for the

evaluation functions to e�ciently navigate through the space of FBRs.

For parts with many di�erent FBRs, this approach appears to be the more promising one. However, as

pointed out earlier, the set of valid feature instances could be in�nite, therefore the set of all valid feature

instances cannot be used as an objective for the feature recognition component in Step 1 of this approach. In

most cases, very few of the potential feature instances for a part will make practical manufacturing sense. So,

in order to make this approach work e�ectively, a system will need to choose which instances to recognize.

Whether or not a system produces correct results will depend on the set of features recognized in Step 1.

4.2 Computational Problems in Generating Alternative Feature Instances

It has been pointed out previously by Marefat [13, 14] that existing feature recognition methodologies

have had only limited success in identifying and describing alternative feature instances. There are several

reasons for this. For example, since features can intersect with each other, the introduction of a new

feature into a design can divide other features into spatially disjoint components; components which may

be computationally expensive to identify and recombine. This poses di�culty for traditional approaches:

rule-based methods must capture all geometric situations that arise from the choice of feature hints and

the ambiguities inherent in manipulating multiple interpretations in many separate rules. Graph-based

algorithms must syntactically or structurally capture these complexities.

Current approaches to addressing the issue of alternative feature instances often lack a systematic means

of selecting the appropriate set of feature instances for planning. The criteria for choosing which instances

to generate are typically ad hoc heuristics that are based on local and incomplete information. For de-

composition approaches, the features are primitive cells or combinations thereof. Which speci�c cells are

used depends on implementation and the geometry of the given part. For knowledge-based approaches, the

behavior of the system is embedded in the rules for completing features from the traces left in the CAD

model. The feature classes addressed by these approaches are byproducts of rules and their interactions in a

reasoning system. Thus, the particular set of features that get recognized is a byproduct of the implementa-

tion of the system. This makes it di�cult to specify the behavior of the feature recognition component and

to generate alternative FBRs in a comprehensive yet well-controlled manner.

One criterion put forth for assessing how well a feature recognition system addresses the above problems

is to ask whether the system is complete. Intuitively, completeness refers to the ability of a system to produce

all features appearing in a speci�c, well-speci�ed class of feature instances. If a system produces all features

in a given class C, then we say that the system is complete over C. In the existing literature, there have

been several e�orts toward guaranteeing completeness. Sakurai [21] presents a system that decomposes the

volume to be machined into disjoint cells and then recombines them to form compound feature instances.

This method is complete over the class of features that can be built from compositions of these primitive cells.

Similarly, Marefat [13] states that his hypothesis testing approach is complete over his class of hypothesis

generators for features. Above mentioned systems were capable of producing a well-speci�ed subset of the

valid feature set.

Note that, in existing systems, completeness has not been addressed in terms of any factors that directly

relate to manufacturing planning. In these cases, completeness is with respect to criteria that are artifacts
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of the computational paradigm they used to recognize the features. What needs to be addressed is how to

best de�ne completeness in terms of its relationship to planning.

4.3 Completeness Versus E�ciency

In most problems we are looking for FBRs that optimize some abstract cost measures. Thus, simply gen-

erating a single FBR is not enough|we need to make sure that the system is capable of generating the

desired solution. Thus, completeness in generating alternative features (as discussed in the previous section)

is important in order to achieve completeness in generating FBRs.

In cases where there are a very large number of alternatives, we also need to ensure that FBRs are

generated in a controlled manner. If a system tries to select the best alternative by simply enumerating

all possible alternatives, complex problems will be computationally intractable. As was noted, very few

of the possible alternatives make sense in practical situations. Thus, pruning techniques are needed to

avoid generation of unpromising alternatives. The ratio of the alternatives examined to the total number of

alternatives can be used as an indicator the e�ciency of a system.

We want to consider some subset of the valid feature set, hence what is needed is a means of de�ning

the restricted set of feature instances Fr that will be of interest when generating manufacturing plans. This

de�nition needs to take into account the likely existence of alternative feature-based representations for the

part. We would to be able to calculate, in advance of feature recognition and planning, what speci�c class

of features needs to be recognized and what class of alternative interpretations will need to be considered in

order to obtain a good plan. Such a speci�cation enhances our ability to do feature recognition by telling us

exactly what to look for. Given such a speci�cation, a system can be implemented with any of the previously

mentioned approaches.

If Fr includes all features of interest for planning and, at the same time, excludes those features that are

not useful for planning, then the knowledge that a system is complete over Fr has very useful implications.

In particular, one would know precisely which manufacturing plans are within consideration and which are

outside the scope of the system. As Fr's properties can be de�ned with respect to planning, one would also

know that most of the computational e�ort is being used to generate and evaluate realistic manufacturing

plans.

Section 5 describes how the notions of useful and primary instances have been used to constrain the valid

feature set. Section 6 describes how FBRs are generated from the restricted set of valid features.

5 Constraining the Valid Feature Set

In this section, we �rst classify the feature instances that help in constraining the valid feature set. After

that, we show how the valid feature set for machined parts can be constrained using these feature instances.

5.1 Useful and Unuseful Instances

The most natural way of classifying the features is to partition them into those that we consider useful for

manufacturing planning, and those that we consider unuseful (i.e., unlikely to occur in any reasonable plan).

Below, we consider several possible ways to do this.

Plan level unusefulness. The simplest way of de�ning unusefulness by stating that a feature f is con-

sidered unuseful, if f does not appear in the optimal plan. However, in most realistic planning problems,

the cost of a feature in a plan is a�ected by other features in the plan. Thus, this set of unuseful features

cannot be determined a priori without actually generating and evaluating all possible plans and, hence, all

possible FBRs. Therefore, this notion of unusefulness cannot be used to constrain the valid feature set in

practice, and is only of theoretical interest.

Furthermore, in manufacturing planning problems, models of cost are not very accurate. Estimated costs

of most operations have associated variations. Therefore, formally de�ning the concept of the optimal plan
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is not possible. Instead, if we rank plans by their estimated costs, on the top there will be a set of desirable

plans. Any of these plans might turn out to be equally good and the planning system needs to be able to

produce one of these plans. Certain operations may get classi�ed as \very expensive or undesirable" without

having any quantitative information. Operations requiring special purpose manufacturing equipment would

be examples of such category. Violation of common manufacturing practice can be considered another

example of this category. Such violation may pose risks of equipment failure or reduce the probability of

successfully completing the operation. Any plan containing these undesirable operations will be considered

undesirable. Therefore, at the bottom of the list of plans there will be a set of undesirable plans. Quite a

few plans may lie between these two extremes. In order to improve computational e�ciency of planning, we

want to prune all undesirable plans.

From practical point of view, we need another de�nition of usefulness at the level of the individual feature

instances.

Feature level unusefulness. In this type of unusefulness, a valid feature instance f will be considered

unuseful if:

Condition 1: f is redundant for every possible plan. A feature f will be considered irredundant in a

plan P if:

(a) Even if the operation corresponding to f is eliminated from P, P can still produce the part from

the stock.

(b) P includes a feature g that corresponds to undoing a portion of f ;

Condition 2: All plans including f will be undesirable.

Condition 3: There exists a feature g, such that replacing f by g in every plan containing f improves

the plan.

In many planning domains, testing Condition 3 a priori will be very di�cult. The exact cost contributed

by a feature f to a plan P can only be determined if all other operations in the plan are known. For example,

whether f will require a new setup or not would depend whether there is any other feature in P that requires

the same setup as f . Thus, in general, an a priori test for determining all unuseful features is not possible.

Therefore, we de�ne another notion of usefulness based on a priori testability. This notion of unusefulness

�nds a subset of features found by the feature level unusefulness.

A priori testable unusefulness. In this type of unusefulness, Condition 3 of feature level unusefulness

is replaced by the following condition:

Condition 3': Let g be a feature that subsumes the portion of workpiece created by f . Let Cu
g be the

upper-bound of cost contributed to P by g. Let Cl

f
be the lower-bound of cost contributed to P by f .

f is unuseful if Cl

f
> Cu

g .

In practice this notion of unusefulness can be used as a pruning guideline for discarding unpromising

feature instances from the valid feature set. E�ectiveness of the pruning would depend on how sophisticated

a test can be implemented to achieve Condition 3'.

Examples. For machined parts, any feature instance having no intersection with the delta volume (i.e.,

volume to be machined) is an example of an unuseful instance. Another example of an unuseful instance is

an end-milling feature instance that is completely subsumed by a face-milling feature instance creating the

same portion of the part at a signi�cantly lower cost.

For sheet-metal bending, feature instances resulting in overbends will be considered unuseful. Every plan

including these type of instances will require another feature instance that will correspond to undoing some

portion of the bending performed by the unuseful instance.

9



5.2 Primary Instances

The set of all useful features Fu as determined by an a priori testable unusefulness criterion may still be

quite large (even in�nite). Thus, we need additional restrictions on the set of features being recognized.

What we would like to do is to recognize a set of representative instances from the set of all useful features.

Such representative instances will be called primary instances and can de�ned by imposing restrictions on

the set of useful features. In selecting these representative instances, one needs to make sure that all other

instances of interest can be generated by manipulating these primary instances.

Primary instances are de�ned as follows. Suppose we can de�ne an equivalence relation E on the set of

all useful features Fu. This equivalence relation E partitions Fu into several di�erent equivalence classes.

From each class we select a representative instance. Whenever required, a representative feature can be

manipulated to produce other feature instances in the same equivalence class. The representative instance

for each class is called the primary instance. A primary instance should also be able to provide good upper

and lower bounds on the cost of including other instances in the same equivalence class to a plan. If we can

identify primary instances for a planning domain, then just recognizing the set of of all primary instances is

adequate for performing the manufacturing planning.

It is easy to see that, while there are a large number of useful instances, a relatively small number of their

characteristics (such as operation type, orientation etc.) are shared by these instances. Therefore, in most

manufacturing domains, an equivalence relation can be devised based on these characteristics to partition

the set of useful features and select primary instances. The set of primary feature instances for the part

is called the primary feature set Fp. The following section describes how to de�ne primary instances for

machining features.

5.3 Primary Instances for Machining Features

Once we select a speci�c domain and a scheme for de�ning manufacturing features, we can formulate speci�c

conditions for identifying valid, unuseful, and primary instances. In this section, we demonstrate how these

conditions can be formulated for machining features that correspond to operations on a 3-axis vertical

machining center. For simplicity, we will restrict ourselves to drilling and milling operations. Note that the

following presents just one set of conditions for machining features. There may be other equivalent conditions

which also adequately get at the notions of valid, unuseful, and primary instances.

Machining features. Consider a class of volumetric machining features, each of which has type, location,

orientation, tool, and a set of attributes describing removal volume as its parameters. The removal volume of

the feature is the volume that can be removed by the feature from the workpiece. For example, Figures 1(a)

and (b) show removal volumes of a drilling and milling features. For a feature f , the removal volume is

denoted by rem(f). Note that the actual volume removed by a feature from a workpiece is not necessarily

its removal volume; instead, it is its e�ective removal volume. The e�ective removal volume e�(f;W ) of a

feature f is de�ned with respect to a workpiece W . It is given as e�(f;W ) = rem(f) \� W .

Conditions for valid instances. A feature instance f is valid for a given part P , if the removal volume

of f does not intersect with P .

Conditions for unuseful instances. A feature instance f is unuseful for a given part and stock, if:

1. f does not create any portion of the part boundary.

2. The orientation of f is not in the set of �xturable orientations Of (how to compute Of is described

below) for the part and stock.

The set of preferred orientations Of is computed as follows:

1. For every planar face u in the part and stock, add a vector perpendicular to u to Of .
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2. For every cylindrical/conical face u in the part and stock, add a vector parallel to axis of u.

3. For every planar face u in the part and stock, do the following:

if no vector in Of is parallel to u, then add a vector parallel to u to Of .

4. For every cylindrical/conical face u in the part and stock, do the following:

if no vector in Of is perpendicular to the axis of u, then add a vector perpendicular to the axis

of u Of .

Conditions for primary instances. For machining features, maximality of the removal volume can

be used to formulate conditions for primary instances. Such instances correspond to the maximal realistic

machinable volume made by a single machining operation in a single machining setup. Such instances can be

easily truncated later to produce other feature instances that correspond to the machining volumes removed

in the actual machining plans.

Given a valid feature instance f 2 Fu, we de�ne the primary container of f to be the feature instance

pc(f) 2 Fu, such that:

1. pc(f) has the same orientation, tool and machining operation as f .

2. The removal volume of pc(f) contains the removal volume of f .

3. For every valid feature g 2 Fu (of the same orientation, tool and machining operation as f) whose

removal volume contains pc(f)'s, g has the same e�ective removal volume as pc(f).

4. For every valid feature g 2 Fu (of the same orientation, tool and machining operation as f) whose

removal volume is contained in pc(f)'s, g has a smaller e�ective removal volume than pc(f).

Now we de�ne the equivalence relation R on Fu. Two instances in Fu are considered R-equivalent if they

have the same primary container. It is quite straightforward to show that R forms an equivalence relation

on Fu. For the sake of brevity, we are omitting the details here.

A feature instance that is the primary container of itself is the representative of its equivalence class and

is de�ned to be a primary instance.

Complexity results for machining features. We would like to calculate an upper bound on the number

of primary features that might exist for a given part. Speci�cally we would like to show that the number of

primary feature instances is polynomial in the \size" of the part. In this analysis, size refers to the number

of geometric and topological entities in the model of the part; i.e. n is O(E) where E is the number of edges

of the part.1

To show the number of primary feature instances is polynomial in the size of the part involves three

observations. First, within the set of useful features there are jOpj possible orientations. As de�ned above,

there are at most 2 orientation vectors added to Op for each face of the part. Hence, jOpj 2 O(n) and, for

each entity in the part boundary, there are O(n) possible orientations for the features to produce that entity.

As noted in Section 2, there may be an in�nite number of such valid feature instances. For each di�erent

tool and machining operation, let T be the set of feature instances producing that entity with the same tool

and operation. We show that T contains one primary instance of a valid feature. If f is a feature in T ,

there is a primary feature pc(f). We know that, for all features g in the set calFu with the same orientation,

tool, and operation (and hence also those in the set T ), then remg � rempc(f). If rempc(g) � remf , then

e�g = e�pc(f), otherwise e�g � e�pc(f). Hence, pc(f) is a primary feature for all features in T , and the

number of primary feature instances is O(n2) (i.e., one primary feature instance of each feature type in each

orientation is capable of creating each portion of the part boundary).

1For the worst case, we can say the size is O(n) where n = E + V + F and E;V; and F are the number of edges, vertices,

and faces of part respectively. By Euler's equation 2 = V � E + F , we can simplify this to be n = 2+ 2E or n = O(E).
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Recognizing the primary feature set for machined parts. In the feature recognition literature, there

are many approaches capable of producing the set of primary features for machined parts. Perhaps the best

suited of these are the trace-based methodologies [24, 18, 13]. In such an approach, machining features are

identi�ed by matching the geometric characteristics of various part faces with various types of features. The

boundary of a feature is comprised of di�erent types of surfaces. Each type (planar, conical, etc.) may be a

part of the boundary of one or more types of features. For example, a cylindrical face could be considered

as the side face of a drilling feature and as a corner radius of an end-milling feature. For a given part face,

we would like to construct all possible useful feature instances that might be used to create the face. For

example, in the case of a cylindrical face, we want to try to instantiate both drilling feature and end-milling

features. Any feature instance that intersects with the part is not valid and is discarded.

In our previous work [19, 18], we have developed trace-based algorithms for identifying the set of primary

feature instances.

6 Using The Primary Feature Set to Generate FBRs E�ciently

Each primary instance is representative of its equivalence class. Thus, the primary feature set Fp captures

the information about the set of all useful features Fu useful for planning. It is worth noting here that, in

building the desired plan, one might be actually interested in a feature instance not present in Fp. Generation

of FBRs from Fp is an indirect process|primary instances can be used to prune unpromising FBRs using

various constraints and feature relationships derived using Fp (which also extend to various instances in Fu).

Therefore, whenever a collection of primary feature instances looks unpromising, all the FBRs that can be

generated by replacing various primary instances by other instances in the respective equivalence class of a

primary instance are also unpromising, and can be discarded.

On the other hand, whenever a collection of primary features appears to be promising, various primary

instances in the collection can be manipulated to create FBRs that consist of the most appropriate instances

from Fu, the set of all useful features. In this way, the primary feature set alleviates the need of ever explicitly

�nding the set of all useful features Fu. This can signi�cantly improve the computational e�ciency of feature

recognition and FBR generation. In this way, the set of primary features Fp forms a very e�ective basis for

the \feature space" of a part.

In order to use primary instances in FBR generation, the same basic idea of the approach presented in

Section 4.1.2 can be used. However, several augmentation steps are needed to allow e�cient use of primary

feature instances. The following is a modi�ed version of the approach that can be used to generate FBRs

using primary instances:

1. For the given part and stock, recognize the primary feature set Fp.

2. Find various constraints on the primary instances in Fp.

(These constraints will later be used to discard infeasible collection of feature instances.)

3. Compute the lower-bound of the cost Cl on any plan resulting from features in Fp.

(Note that Cl also applies to Fu.)

4. Compute the upper-bound of the cost Cu on any plan resulting from features in Fp.

(Note that Cu also applies to Fu.)

5. Initialize current best = Cu.

(Variable current best is used to store the cost of current-best solution.)

6. Do Steps (a)-(c) repeatedly, until:

� current best has come close enough to Cl;

� or, no new FBR can be generated.
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(a) Find a new FBR F by manipulating a collection of instances in Fp such that:

i. lower-bound of the cost on any plan resulting from features in F is better than current best.

ii. F respects various constraints found in Step 2.

(b) Using various features in F , generate the best possible plan P .

(c) If plan P is better then current best, then update current best.

7. Return the FBR and the plan that resulted in the current value of current best.

Details of various steps of the above described procedure depend on the speci�c domain. How well a

primary set captures the information in the set of all useful features determines the e�cacy of this approach.

In the the following section, we describe details of some of the steps of this procedure in the domain of

machined part.

6.1 Generating FBRs for Machined Parts

Finding constraints to discard unpromising FBRs. Tolerance and symmetry information can be

used to generate a set of constraints on features in Fp that describe which subsets of Fp are not feasible and

which subsets look more promising. For example, any two features having di�erent orientation vectors but

associated with the faces having tight tolerances will not result in a feasible FBR. Symmetric portions of

the part should be machined with similar features (i.e, having the same type and orientation). Plans with

similar features typically have lower cost compared to the plans with dissimilar features. Thus, whenever

possible, similar feature combinations should be tried �rst.

Finding lower and upper bounds at the feature level. Since a primary instance volumetrically

subsumes every instance in its equivalence class, it can easily provide an upper-bound of cost of every

instance in its class. The irredundant portion of the primary feature instance can be used to provide lower-

bounds.

Generating FBRs. In case of machined parts, an FBR is basically an irredundant volumetric cover of

the delta volume. Thus, techniques for �nding irredundant set covers can be used to generate FBRs in

case of machined parts. From implementation point of view, FBR generation step (Step 6(a) of the general

approach) can be solved more e�ciently using the following two sub-steps:

1. Find volumetric covers of e�ective removal volumes of various primary features. Note that two feature

instances can have the same e�ective removal volume. For example, the feature shown in the �rst row

and the �rst column and the feature shown in the second row and the �rst column of Figure 3(c) have

the same e�ective removal volume.

2. Find FBRs corresponding to a volumetric cover R found in the previous step by adding feature instances

that resulted in various e�ective removal volumes in R.

Finding lower and upper bounds at the FBR level. Given a set of feature instances G, the function

h(G) can be used to �nd the lower bound on the production time of plan resulting from features in G. h(G)

is de�ned as

h(G) = Ls(G)� Ts + (1 + �)
X

g2G

Lmt(g);

where

� Ls(G) is a lower bound on the number of setups needed to machine G. For three-axis machining

centers, Ls(G) is the cardinality of the set f~v(g) : g 2 Gg, where ~v(g) is the orientation vector for g.
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� Ts is the minimum setup time.

� Lmt(g) is a lower bound on the time required to machine g. This is the time required to machine the

irredundant portion of the e�ective removal volume of g. Let solid gI = e�(g; S)��[f2G�ffg(e�(f; S)),
where S is the stock. Now Lmt(g) can be computed as

Lmt(g) = machining time for g � (volume of gI=volume of e�(g; S)):

� � is the fraction of machining time that accounts for the auxiliary time.

h(G) is very useful for discarding FBRs that involve features from many di�erent approach directions,

and therefore require many setup changes.

7 Conclusions

In a variety of application domains, it is useful to employ representational schemes in which parts to be

manufactured are represented as collections of manufacturing features. However, even within a single repre-

sentational scheme, there can be many alternative representations of the same part as di�erent collections

of feature instances. For complex parts, the number of feature instances can be so great that it is infeasi-

ble to deal with all of them. In order to integrate feature recognition systems with downstream software

components, it is important to use only those feature instances that are actually relevant for manufacturing.

In this paper, we have argued that for most reasonable de�nitions of manufacturing features, there is a set

of primary feature instances that are su�cient for generating all promising manufacturing plans. Thus, this

approach ensures that only a reasonable amount of feature-based representations are examined, while also

ensuring that the desired representation will not be overlooked by the system. To demonstrate applicability

of this approach, we have provided detailed examples of how this approach can be used in the domain of

machined parts.

We anticipate that system designs based on the use of primary feature instances will result in better

integration of feature recognition and manufacturing planning. By using primary features, feature recognition

methodologies can be focused toward �nding only those features most applicable for generating realistic

manufacturing plan.
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